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Abstract

Barcoding is a mathematical tool, to analyze data, which is based on the theory of

persistent homology. In this thesis both Hierarchical Clustering and Barcoding are defined

and analyzed according to three criterion: Continuity, Computability and Visualizability.

It is also presented how the two methods, barcoding and hierarchical clustering, are

connected and why barcoding, in some cases, is a generalized method of hierarchical

clustering. Lastly some more question of interest, for better understanding barcoding,

are stated.





Sammanfattning

Barcoding är ett matematiskt verktyg, för att analysera data, vilket bygger p̊a teorin

om ih̊allande homologi. I den här uppsatsen är b̊ade Hierarkisk Klustring och Barcoding

definierade och analyserade med avseende p̊a tre kriterier: Kontinuitet, Beräkningsbarhet

och Visualiserbarhet. Det presenteras även hur de tv̊a metoderna, barcoding och hier-

arkisk klustring, är sammanlänkade och varför barcoding, i vissa fall, är en generaliserad

metod av hierarkisk klustring. Tillsist är n̊agra fler fr̊agor av intresse, för att bättre först̊a

barcoding, presenterad.
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Notation

Symbol Meaning

R The real numbers.

R+ The positive real numbers including 0.

N The natural numbers including 0.

K A simplicial complex.

π0(K) The set of connected components of K.

Č(I,∼) The Čech complex.

VR(I,∼) The Vietoris-Rips complex.

N(I) The Nerve complex.

(X, d) A metric space.

{B−1r (i)}i∈f(I) A sequence of subsets of X constructed from the balls of radius r in some

pseudometric space over X.

Č(I,∼r) The Čech complex constructed from {B−1r (i)}i∈f(I).

VR(I,∼r) The Vietoris-Rips complex constructed from {B−1r (i)}i∈f(I).

N(I,∼r) The Nerve complex constructed from {B−1r (i)}i∈f(I).

Hn(K) The n:th homology group over the the simplicial complex K.

dGH(X, Y ) The Gromow-Hausdorff distance between the two metric spaces X and Y .

C(X) The collection of all non-empty subsets of X.

Π A partition of X.

B An element of C(X).

P(X) The collection of all partitions of a set X.

D(X) The collection of all dendrograms over a set X.

U(X) The collection of all ultrametric spaces over a set X.
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θ(X) A dendrogram in D(X) for some set X.

C A category.

P A partially ordered set.

P The category of a partially ordered set P .

K A category of simplicial complexes.

V A category of vector spaces.

Φ : P → C A P-persistence category.

Φ : P → K A P-persistence simplicial complex

Φ : P → V A P-persistence vector space

Q(a, b) A bar from a to b.

Q A bar code.
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Background

Now more than ever the need for tools to deal with big data is increasing. In a lot of cases

the distribution behind the data is unknown and also it is rather a rule than an exception

that the data is noisy. Therefore methods for analyzing big sets of high dimensional data

which can deal with the noise are needed. In this thesis an algebraic approach to the

problem will be presented.

In the first chapter the basics concepts used in the rest of the thesis are brought up.

The second chapter explains hierarchical clustering. The third chapter explains how the

method of barcoding is carried out. Both methods are discussed and examples are shown

[4].

Almost all the examples in this thesis are generated by a package called javaplex for

matlab (see [12]). It is a very useful tool for anyone who wants to learn more about

barcoding and work with examples to understand the computational aspect better.

2.1 Simplicial Complexes

When trying to cluster or simplify data we want to end up with a structure that is easier

to comprehend and visualize. The premise is that the data is sampled from a geometric

object or a topological space. Since we are interested in the shape of the data we first

need to build a structure that reflects the geometry of the space the data is sampled from.

For this purpose the simplicial complexes are used.

Definition: Let U be a set (we call it a universe for our simplicial complexes). A

simplicial complex K is a collection of non-empty finite subsets of U such that if σ ⊂ U
belongs to K, then so does any non-epmty subset τ ⊂ σ.

To be able to describe properties of simplicial complexes, we use the following dictio-

nary. An element of simplicial complex K whose cardinality is n + 1 is called a simplex

of dimension n of K. A vertex of K is a simplex of K of dimension 0. A face of K is

a simplex in K of maximal dimension. A subcomplex Q of K is a simplicial complex

such that Q ⊂ K. For example the collection of all the subsets of a simplex σ in K is a

subcomplex of K denoted by ∆[σ] ⊂ K. The vertices in ∆[σ] are called the vertices of

σ. A subcomplex Q ⊂ K is called full if a simplex σ in K belongs to Q if and only if all
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its vertices belong to Q. Thus a full subcomplex Q ⊂ K is uniquely determined by its

set of vertices.

Two vertices x, y ∈ K are said to be directely connected if {x, y} is a simplex in

K. Note that being directly connected is a symmetric and reflexive relation on the set

of vertices of K. However it is not a transitive relation in general. Consider then the

equivalence relation on the set of vertices of K generated by the relation of being directly

connected. The set of equivalence classes of this equivalence relations is denoted by π0(K)

and called the set of connected components of K. Let [x] ∈ π0(K) be an equivalence

class. The full subcomplex on the set of vertices that belong to [x] is called the connected

component of K and is denoted by K[x]. Note that K =
∐

[x]∈π0(K)K[x]. We see later on

how to use homology to determine the size of π0(K).

2.2 Forming Complexes

A computer cannot analyze a topological space directly but they can however analyze

combinatorial objects e.g. simplicial complexes. The goal of this section is to introduce

notations that allow us to connect a set of data drawn from a topological space to a

simplicial complex.

A convenient starting point to form simplicial complexes is a reflexive and symmetric

relation. Let us choose such a relation ∼ on a set I. We use it to construct two simplicial

complexes, Č(I,∼) called Čech complex and VR(I,∼) called Vietoris Rips complex :

Č(I,∼) = {σ ⊂ I | there is i in I s.t., for any j in σ, i ∼ j}

VR(I,∼) = {σ ⊂ U | for any i and j in σ, i ∼ j}

Let us choose a sequence of subsets {Ui ⊂ X}i∈I of a given set X. Such a sequence leads

to the following reflexive and symmetric relation of the set of indexes I:

i ∼ j if and only if Ui ∩ Uj 6= ∅.

We can then use this relation to form two simplicial complexes Č(I,∼) and VR(I,∼).

Explicitly, σ ∈ Č(I,∼) if and only if there is Uj such that Uj ∩Ui 6= ∅ for any i in σ; and

σ ∈ VR(I,∼) if and only if Ui ∩ Uj 6= ∅ for any i and j in σ. With a sequence of subsets

{Ui ⊂ X}i∈I we can also form a so called the nerve complex:

N(I) := {σ ⊂ I |
⋂
i∈σ

Ui 6= ∅}

Assume that X is not just a set but a topological space. By choosing various sequences of

subsets {Ui ⊂ X}i∈I we can then form three simplicial complexes. The natural questions

is how much of the geometry of X these simplicial complexes capture? In this context
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the nerve complex is particularily important since the nerve theorem states that if the

chosen sequence {Ui ⊂ X}i∈I consists of open subsets, it covers X, and all non-empty

finite intersections of its elements are contractible, then the associated nerve complex

is weakly equivalent to the space X [3]. Unfortunately the nerve complex tend to be

very big in real life situations and hence computationally expensive. Same tends to be

true also for the Čech complex. It is therefore often the Vietoris Rips complex which is

the preferable choice, even though it may not capture the entire homotopy type of X.

The Vietoris Rips complex is also easier to store in a computer since we only need to

store the vertices and edges, the higher dimensional simplexes are constructed from this

information. However this also means that it can be computationally heavy since we do

not have all the simplexes stored directly. Also we will see that Vietoris-Rips does often

capture so called persistance features of X.

We have seen that we can construct a simplicial complex from a sequence of subsets

and therefor it is natural to discuss how a sequence like this can be constructed. The

method used in this thesis needs three things for the construction.

1. A map f : X → (X, d) from the topological space X to a pseudometric space (X, d).

Remember that a pseudometric space is a metric space but d(x, y) = 0 does not

imply that x = y.

2. A finite subset I ⊆ X. We could choose I = X but from a computational standpoint

X might be too big.

3. Also we need to choose a resolution, sometimes called clustering parameter, r ∈ R+.

Now for each i ∈ I we build an r-ball in the pseudometric space Br(f(i)) = {x ∈
(X, d) | d(x, i) < r}. By taking the inverse f−1(Br(f(i))) we end up with a sequence of

subsets in X as wanted. With short notation we denote this sequence as {B−1r (i)}i∈f(I).

Example: Let X be a topological space, f : X → (X, d) some map to a pseudomateric

space (X, d) and let I = X. Then the family of open balls {B−1r (x)}x∈f(X) is a covering

of X for all r > 0.

For short hand notation we write N(I,∼r), VR(I,∼r) and Č(I,∼r) when referring to

the complexes built by the ball sequence. This section will be closed with an important

theorem showing an intimate connection between the Nerve complex and the Vietoris

Rips complex.

Theorem: The following inclusions are true N(I,∼r) ⊆ VR(I,∼2r) ⊆ N(I,∼2r)

Proof. We start by showing the first inclusion N(I,∼r) ⊆ VR(I,∼2r). Let the simplex

σ = (α0, α1, . . . , αk) ∈ N(I,∼r). Since σ is in the Nerve complex this means that for any
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two αi, αj ∈ σ the intersection of Br(αi) and Br(αj) is non empty. This implies that the

distance between αi and αj must be smaller than 2r and hence σ ∈ VR(I,∼2r).

To show the second inclusion VR(I,∼2r)⊆N(I,∼2r) let the simplex σ = (α0, α1, . . . , αk) ∈
VR(I,∼2r). Then for any two αi, αj ∈ σ the distance between the points is less than 2r

and hence αi ∈ B2r(αj) for any 0 ≤ i, j ≤ n. Then the intersection
⋂
iB2r(αi) 6= ∅ and

hence σ ∈ N(I,∼2r) which completes the proof.

Note that the theorem does not guarantee us that the Nerve- and Vietoris Rips complex

will be isomorphic for some choices of the clustering parameters of respective complex.

Rather is shows that the clusterings are similar in how they form as we increase the

clustering parameter.

2.3 Multiresolution

Let X be a topological space and f : X → (X, d) a map to some pseudometric space.

Then we need to make a choice regarding which resolution r to use when constructing

the sequence of subsets. In general there is however not a single unique resolution that

will capture the geometry of the data in an optimal way. Therefore we need a method of

varying the resolution to capture the general geometry. This concept is called multireso-

lution.

Definition: Let U = {Ui}i∈I and V = {Vj}j∈J be two coverings of X. A map of

coverings is defined as a function g : I → J such that Ui ⊆ Vg(i) for all i ∈ I.

Note that a map of coverings leads to an induced map on the nerve of the coverings

N(g) : N(U)→ N(V ) of simplicial complexes given by g on the vertices of the simplicial

complexes. In the same way given a family of coverings {Uα} and a family of map of

coverings {gα} we obtain the induced chain of simplicial complexes.

N(U0)
N(g0)
↪→ N(U1)

N(g1)
↪→ . . .

N(gN−1)
↪→ N(UN)

Example: Let X be a topological space and let {B−1r (i)}i∈f(I) be a sequence of subsets

for some map f to a pseudometric space and a resolution r. For any r′ ∈ R+ such that

r < r′ we get the map of coverings

g : B−1r (i) 7→ B−1r′ (i)

and hence the induced map of simplicial complexes.

N(g) : N(
⋃

i∈f(I)

B−1r (i)) ↪→ N(
⋃

i∈f(I)

B−1r′ (i))
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Figure 2.1 illustrates the point that the geometry of data is hard to capture with a single

resolution. In this case it could be solved by only keeping a percentage of the points that

are in the densest area of the data. But such a choice would be arbitrary and hence we

want another method of doing it. By using multiresolution we will not miss the circle

feature of the data since at small resolutions the circle will be captured [9].

Figure 2.1: The data resembles a circle but the red data points in the middle would make
clustering miss this feature at some choices of resolution.

2.4 Homology

Even though a computer is good at storing information needed to describe a simplicial

complex, it is not good at comparing them as this process is computationally heavy.

Instead of comparing complexes directly, one strategy is to first extract certain geometric

invariants and then compare the invariants rather than complexes themselves. Homology

is a convenient source of such invariants.

Let us fix a field which for computational purposes is often finite. Let K be a simplicial

complex. Choose an ordering on the set of its vertices. Define Σn to be the set of

increasing (with respect to the chose ordering) sequences (x0, . . . , xn) of length n + 1

of vertices of K. Let Sn(K) to be the vector space generated by the set Σn. We use

the ordering to define a boundary operator ∂n : Sn(K) → Sn−1(K) as follows. For

σ = (x0, . . . , xn), ∂n(σ) := Σn
i=0(−1)i(σ − {xi}), where σ − {xi} denotes the sequence

obtained from σ by removing its i-th component.
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One can observe that ∂n ◦ ∂n+1 = 0 and hence Im(∂n+1) ⊆ Ker(∂n) which allows one

to define Hn(K) := Ker(∂n)/Im(∂n+1). This vector space is called the n-th homology of

K and it does not depend on the choice of ordering of vertices of K.

The dimension of the 0-th homology H0(K) is the number of connected components

of K and hence coincides with the size |π0(K)|. More generally, for n > 0, the vector

space Hn(K) counts the number of n+ 1 dimensional holes in the simplicial complex, see

for example [2] for further explanation.

2.5 The Gromov-Hausdorff Distance

When working with metric spaces it is useful to be able to determine the degree of sim-

ilarity between them. The Gromov-Hausdorff distance measures the similarity between

metric spaces as seen in the definition.

Definition: Let (X, dX) and (Y, dY ) be two finite metric spaces. The Gromov-Hausdorff

distance of X and Y is defined as:

dGH(X, Y ) = min
ϕ:X→Y
ψ:Y→X

max{dis(ϕ), dis(ψ), dis (ϕ, ψ)}.

where the distortion is defined in the following way

dis(ϕ) = max
x,x′∈X

|dX(x, x′)− dY (ϕ(x), ϕ(x′))|

dis(ψ) = max
y,y′∈Y

|dY (y, y′)− dX(ψ(y), ψ(y′))|

dis(ϕ, ψ) = max
x∈X,y∈Y

|dY (y, ϕ(x))− dX(x, ψ(y))|

Note that if dis(ψ, ϕ)=0 then dGH = 0 but dis(ψ) = dis(ϕ) = 0 does not imply that

dis(ψ, ϕ)=0. Informally the Gromov-Hausdorff distance measures how well the metric

spaces can be embedded in each other and how well the functions ψ and ϕ are inverses

of each other.

2.6 Dendrograms

Graphically a dendrogram is presented as a rooted tree and usually meant to present a

hierarchical clustering. Formally a dendrogram is a finite set X together with a function

θ[0,∞) → P(X) where P(X) is the collection of all partitions, or clusterings, of X.

There are four additional restrictions one puts on a dendrogram.

1. θ(0) = {{x0}, {x1}, ·, {xn}}, that is the space itself.
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2. There exists a t0 such that for every t ≥ t0 the partition is the single block.

3. if r ≤ s then θ(r) refines θ(s).

4. For each r there is an ε > 0 such that θ(r) = θ(t) where t ∈ [r, r + ε].

We denote a dendrogram over some setX by θ(X). Dendrograms are used when clustering

data to visualize how the clusters are formed. Two examples of dendrograms can be

seen in figure 2.2. However for clustering of big data sets dendrograms can be hard to

interpret. Also it is computationally expensive to compare two dendrograms over sets

with each other.

Figure 2.2: Two dendrograms visualizing two different clusterings of four data points.
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Hierarchical Clustering

In this thesis we discuss the method of agglomerative hierarchical clustering which is

when each data point starts out as its own cluster. We will however simply refer to it as

hierarchical clustering.

3.1 Clustering Algorithm

A hierarchical clustering is a method for assigning to a metric space a dendrogram. This

is done with a help of a so called linkage function which encodes a notion of a distance

between two subsets of a given set. Recall that C(X) denotes the collection all non-empty

subsets of X. A linkage function on a set X is simply a bounded function of the form

l : C(X)×C(X)→ R≥0. Here are some of the most common and most used examples of

linkage functions:

1. Single linkage: lSL(B,B′) = minx∈B miny∈B′ d(x, y).

2. Complete linkage: lCL(B,B′) = maxx∈B maxy∈B′ d(x, y).

3. Average linkage: lAL(B,B′) = 1
|B||B′|Σx∈BΣy∈B′ d(x, y)

We recall now how a linkage function leads to a permutation invariant hierarchical clus-

tering. Permutation invariance is important as it makes this process independent from

how we enumerate and store the data. This method can be found in ”Characteriza-

tion, Stability and Convergence of Hierarchical Clustering Methods” (2009) by Gunnar

Carlsson and Facundo Mémoli [6].

1. Fix a linkage function l : C(X)×C(X)→ R≥0. For each resolution r ≥ 0 form the

equivalence relation ∼l,r on C(X) where B ∼l,r B′ if and only if there is a sequence

B = B1, . . . ,Bs = B′ of subsets of X such that l(Bi,Bi+1) < r for i = 1, . . . , s− 1.

2. Define a sequence of partitions Π1,Π2, . . . of X as follows. We start with Π1 :=

{{x1}, {x2}, . . . , {xn}} and set recursively Πi+1 = Πi/ ∼l,Ri for i ≥ 1 where

Ri := min{l(B,B′) : B,B′ ∈ Πi,B 6= B′}

3. Define θl : [0,∞)→ P(X) by θl(r) := Πi(r) where i(r) := max{i|Ri ≤ r}.
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3.2 Discussion of Properties

Even thought hierarchical clustering is a widely used method for analyzing data it has

several drawbacks. To analyze data ultimately our method should:

1. have an output that is visualizable;

2. have outputs that are in some metric space with calculable distances,

3. be continuous and stable so its outcome is not sensitive to noise and small pertur-

bations.

Unfortunately not all hierarchical clustering methods satisfy all the above requirements.

In what follows we discuss shortly these aspects of hierarchical clustering.

3.2.1 Visualization

Small dendrograms provide a very convincing and useful visualization of the data. How-

ever, as the number of data points increases, so does the complexity of dendrograms.

This makes it very hard to understand properties of such a dendrogaram, see for example

figure 3.1.

3.2.2 Comparing Outputs: Dendrograms

To understand if it is hard to compare dendrograms some more theory is needed. The key

observation is the identification of dendrograms over a set X with so called ultrametrics

on X. This is the content of ”Characterization, Stability and Convergence of Hierarchical

Clustering Methods” (2009) by Gunnar Carlsson and Facundo Mémoli [6] and we recall

below how it is done.

Theorem: Given a finite set X, there is a bijection ψ : D(X) → U(X) between the

collection U(X) of all ultrametrics over X and the collection D(X) of all dendrograms

over X, such that for any dendrogram θ ∈ D(X) the ultrametric ψ(θ) gives the same

hierarchical decomposition as θ. i.e

for each r ≥ 0, ψ(θ)(x, x′) ≤ r ⇐⇒ x, x′ ∈ B ∈ θ(r)

and the bijection is given by

ψ(θ)(x, x′) 7→ min{r ≥ 0 | x and x’ belong to the same block of θ(r)}
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Figure 3.1: Already at 30 data points a dendrogram can be hard to interpret.

Proof. We first explain how to form an ultrametric on X given a dendrogram θ : [0,∞)→
P(X). Define the symmetric function X ×X → R+

(x, x′) 7→ min{r ≥ 0 | x and x’ belong to the same block of θ(r)}

This map is well defined because of condition (4) in the definition of dendrograms. Also

note that this is in fact an ultrametric.

With an ultramatric u, as with any other metric on X, we can use a single linkage

to associate a dendrogram:

θ(u) : [0,∞)→ P(X)

Recall that, for each r ≥ 0, we use the single linkage to form the following relation:

x ∼r x′ ⇐⇒ u(x, x′) ≤ r

The reflexivity and symmetry holds for any metric on X. However for an ultrametric this

relation is also transitive and hence it is an equivalence relation on X. This implies that

ψ is a bijection and that for any θ ∈ D(X) the corresponding ultrametric ψ(θ) gives the

13



same hierarchical decomposition.

This theorem allows us to identify each dendrogram with its corresponding ultrametric

space. The collection of all ultrametric spaces U(X) is a metric space itself with the

Gromov-Hausdorff distance. Via the mentioned identification we can then import the

Gromov-Hausdorff distance to define a metric on the collection of all dendrograms on X.

This gives us a a way of measuring distances between dendrograms and understanding

how far apart they can be. Unfortunately Gromov-Hausdorff distance is computationally

very expensive and requires to perform |X|! operations, where |X| denotes the size of X.

Thus even for a very small set X, it is basically computationally impossible to determine

the Gromov-Hausdorff distance between dendrograms on X. We can use however this

distance to understand the stability of a hierarchical clustering method which is the

content of the next section.

3.2.3 Continuity

Among the three mentioned linkage functions above only the hierarchical clustering in-

duced by the single linkage is continuous. This is unfortunate since single linkage has the

chaining phenomenon which merges together separated clusters if there is even a very

small path of points connecting them. This is illustrated in figures 3.2 and 3.3. In such

cases complete linkage is a preferable methods as it clearly shows there are two separate

clusters in the data set. Unfortunately complete linkage is not a stable hierarchical clus-

tering method in general. Thus its usage for a particular data set has to be tested for

continuity around that data set.

Figure 3.2: Some noisy data of two circles.
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Figure 3.3: Left: The dendrogram produced from data with complete linkage. Right:
The dendrogram produced from data with single linkage.
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Barcoding

A more general approach of clustering data is by creating bar codes. This section describes

the step by step process of going from a data set to a bar code. There are four main steps

each described in the following order.

1. Data systems

2. Persistence simplicial complexes

3. Persistence vector spaces

4. Bar codes

A brief explanation of the four different steps is given here before further in depth explana-

tion and results are discussed. A data system is a set of data X drawn from a topological

space together with at least one function f : X → (X, d) from X to some pseudometric

space (X, d) over X. Let I ⊆ X and for each r ∈ R+ construct the sequence of subsets

{B−1r (i)}i∈I which in turn allows us to define simplicial complexes, for example the nerve

complex N(I,∼). The family of of simplicial complexes {N(I,∼r)}r∈R+ together with

the ordering on R+ is what we call an R+-persistence simplicial complex. Applying the

homology functor on the family of simplicial complexes gives us a family of vector spaces.

This family together with the ordering on R+ is what we call a R+-persistence vector

space. From the R+-persistence vector space we can then draw the bar code which is the

goal of the entire method.

4.1 Data Systems

Let X be a set which is drawn from some geometry. Then we can define a data system

as follows.

Definition: A data system is a set X together with a family of functions, fi : X →
(Xi, di), where (Xi, di) is a pseudometric space. The functions fi are called measurements.

The measurements {fi} should informally be though of as a way to capture something

of interest in the data. A map f to pseudometric space could for example try to capture

how similar two data points are. We will mainly focus on data systems with only one

map in this thesis.
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4.2 Persistence Simplicial Complexes

In this section we discuss how to construct a persistence simplical complex from a data

systems. First the persistence simplicial complexes is defined and then some examples

are given.

Definition: Let C be any category and P a partially ordered set. Define the category

P with the object set P and the unique morphism px≤y : x 7→ y whenever x ≤ y. A

P-persistence category is a functor Φ : P → C or in other words a set of objects {cx}x∈P
together with a set of morphisms φx≤y : cx → cy whenever x ≤ y. Also φy≤z ◦φx≤y = φx≤z

whenever x ≤ y ≤ z.

In the most examples of this thesis the partially ordered set P is the positive real line

R+ and is called resolution [8]. Remember that given a data system we can construct a

simplicial complex, for example the nerve complex, for each resolution r ∈ R+. Let K be

the category of simplicial complexes with the objects the simplicial complexes constructed

for each resolution {kr}r∈R+ and the trivial inclusion morphisms φx≤y : kx ↪→ ky if x ≤ y.

Note that then it is true that φy≤z ◦ φx≤y = φx≤z whenever x ≤ y ≤ z and hence K is a

category. We define a R-persistence simplicial complex as a functor Φ : R+ → K which

maps:

• Objects: Φ(x) = kx.

• Morphisms: Φ(px≤y) = φx≤y if x ≤ y.

Example: Let X together with a function f : X → (X, d) to a pseudometric space be

a data system. Let I ⊆ X be a subset of X and for each resolution r ∈ R+ construct the

nerve complex N(I,∼r). Let Φ : R+ → K be a functor where R+ is the category where

the objects are the real positive numbers and the morphisms are px≤y from x to y when

x ≤ y. Let K be the category where N(I,∼r) are the objects and the morphisms are the

trivial inclusions φx≤y : N(I,∼x) ↪→ N(I,∼y) for x ≤ y.

As seen in the example the functor Φ is a R+-persistence simplicial complex. We think

about Φ as a collection of simplicial complexes together with an ordering on them. Also

we have the trivial inclusion maps from a simplicial complex lower in the ordering to one

higher in the ordering. Another example is when we have more than one map to a metric

space. Then a relation can be defined in a similar manner:

Example: Let fn : X → (Xn, dn) where 0 ≤ n ≤ N for some N ∈ N be a data

system. Define the partial ordering (x1, x2, . . . , xN) ≤ (y1, y2, . . . , yN) if and only if

fn(x) ≤ fn(y) for every 0 ≤ n ≤ N . Let I ⊆ X and construct the sequences of
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subsets {Brn(i)}i∈I in X for each fn and resolution rn ∈ r = (r0, r1, . . . , rN). Con-

struct N(I,∼r) =
⋂

0≤n≤N Nn(I,∼r) where Nn(I,∼r) denotes the nerve complex con-

structed from {Brn(i)}i∈I and define the category of simplical complexes K where the

morphisms are the trivial inclusion morphisms φx≤y : N(I,∼x) ↪→ N(I,∼y) if and only if

x = (x1, x2, . . . , xN) ≤ y = (y1, y2, . . . , yN) according to the above definition.

Then define the category RN where the objects are elements of RN and the mor-

phisms are pxN≤yN : xN → yN from the object xN = (x0, x1, . . . , xN) to the object

yN = (y0, y1, . . . , yN) if only if xn ≤ yn for 0 ≤ n ≤ N .

Finally we construct the RN -persistence simplicial complex Φ : RN → K by Φ(xN) 7→
N(I,∼xN ) and Φ(pxN≤yN ) 7→ φxN≤yN .

Note that the P-persistence objects form their own category. Let Φ and Ψ be functors

from the category of a partially ordered set P to a category C. We first note that the

functors Φ and Ψ can be thought of as a collection of objects and morphisms denoted

{cx, φx≤y}x,y∈P and {dx, ψx≤y}x,y∈P respectively. Then a functor F : Φ → Ψ, or more

concretely F : {cx, φx≤y} → {dx, ψx≤y}, is a family of morphisms {fx} such that fx :

cx 7→ dx and the following diagram commutes: [5]

cx
fx−−−→ dx

φx≤y

y yψx≤y
cy

fy−−−→ dy

4.3 Persistence Vector Spaces

Even constructing persistence simplicial complexes is not enough to visualize data. These

complexes are often of very high dimension and hence cannot be directly visualized. Also

it is of high computational cost to compare two simplicial complexes. Hence we need

further simplifications and the concept of persistence vector spaces is an intermediate

step to be able to construct bar codes.

Definition: Let P be the category of a partially ordered set and let V be a category

of vector space over some field k. The objects of V are vector space Vx where x ∈ P and

the morphisms L(x, y) : Vx → Vy are linear maps whenever x ≤ y such that

L(y, z) ◦ L(x, y) = L(x, z) whenever x ≤ y ≤ z

A persistence vector space is a functor Ψ : P → V from the category P of a partially

ordered set to the category of vector spaces V . Let px≤y ∈ P be defined as earlier. Then

Ψ(px≤y) = L(Vx, Vy) and Ψ(x) = Vx.

18



Let Φ : P → K be a P-persistence simplicial complex. We have already seen examples

of how to construct Φ from a data system. Let kx ∈ K be a simplicial complex then for

any n ∈ N we can construct the vector space Vx = Hn(kx) where Hn denotes the homology

functor.

To summarize where we are at before moving on to the next section. Given a data

system we construct an R+-persistence simplicial complex

Φ : R+ → K

and with the homology functor Hn construct an R+-persistence vector space:

Ψ : R+ → Hn(K) = V

for some n ∈ N. Remember that informally the dimension of a vector space Hn(Kx)

corresponds to the number of n-dimensional holes of Kx.

4.4 Bar Codes

In this section a way of creating bar codes from R-persistence vector spaces is discussed.

The reader should note that even though in the R-persistence case bar codes will actually

look like bar codes the goal of barcoding is simply to visualize data. It is still being worked

on how to do bar codes for a Rn-persistence system.

Let Φ : R+ → V be an R+-persistence system constructed from a finite data system.

We form the equivalence classes

[Vx] = {Vy | either if y ≤ x then L(y, x) is a bijection or else if x < y L(x, y) is a bijection}

Since the data system is finite there is only a finite number of equivalence classes. Also,

each class corresponds to a unique piece of the real line R+. Introduce the total ordering

[Vx] < [Vy] if and only if x < y. Since the data system is finite there is only a finite

number of equivalence classes. Define the N-persistence vector space with the objects Vn

= the n:th equivalence class according to the ordering and the morphisms defined in the

same manner. Now also note that since L(i+ 1, i+ 2) ◦L(i, i+ 1) = L(i, i+ 2) every map

can be decomposed L(i, i + k) = ϕi+k−1 ◦ ϕi+k−2 ◦ . . . ◦ ϕi where L(i, i + 1) = ϕi is the

unique map from Vi to Vi+1. Hence we only need to consider the objects {Vi}i∈N together

with the morphisms {ϕi}i∈N [13]. We are now ready to simplify this system into what we

call bars.

Definition: Let F be a 1-dimensional vector space over some field. We define a bar as

an N-persistence vector space Q(a, b) by
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• Q(a, b)t = 0 for t < a

• Q(a, b)t = F for a ≤ t ≤ b

• Q(a, b)t = 0 for b < t

where a, b, t ∈ N. Let the linear maps L(m,n) = IdF for a ≤ m ≤ n ≤ b and else L(m,n)

is the zero map, m,n ∈ N.

Informally a bar is a collection of 1-dimensional vector spaces with identity maps

between them. Define Q(a,+∞)t = F for all a ≤ t with the corresponding maps. Since

an N-persistence vector space is constructed from a finite data system each vector space

Vn is finite dimensional. The fact that the data system if finite also implies that there is

an N ∈ N such that all Vn are isomorphic for n ≥ N . One way to easily visualize a bar is

by simply drawing a line from a to b on the real line which is exactly the kind of simple

visualization we are looking for. An example of how a bar code looks like can be seen in

figure 4.1.

Figure 4.1: The bar code generated by the dendrograms in figure 2.2.

We first show that each N-persistence vector space that is built from a finite data

system can be decomposed into bars and then that this decomposition is unique.
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Theorem: All N-persistence F -vector spaces, V = {Vi, ϕi}i∈N, such that dim(Vi) <∞
and such that there exists an n ∈ N such that ϕi is an isomorphism if i ≥ n can be

decomposed into a sum of bars, i.e V =
⊕

iQ(ai, bi).

Proof. This proof is done by contradiction. Note that given the smallest n ∈ N such

that every map after that is an isomorphism the sum dim(V ) = Σn
i=1dim(Vi) is finite.

Now assume it is not true that V can be decomposed. Then there is a V that cannot be

decomposed such that dim(V ) is the smallest.

V1
ϕ1→ V2

ϕ2→ . . .
ϕn−1→ Vn ∼= Vn+1 . . .

The map ϕ1 must be a monomorphism since if it is not one can decompose V1 = W ⊕
ker(ϕ1) = W ⊕Q(1, 1)dim(ker(ϕ1)) for some W with smaller dimension than V1. This is a

contradiction since then

W
ϕ1→ V2

ϕ2→ . . .
ϕn−1→ Vn ∼= Vn+1 . . .

would be non-decomposable but with a smaller sum of dimensions. Hence

V1
ϕ1
↪→ V2

ϕ2→ . . .
ϕn−1→ Vn ∼= Vn+1 . . .

where ↪→ denotes a monomorphism.

Now assume that ϕi is a monomophism for i ≤ k where k ∈ N

V1
ϕ1
↪→ V2

ϕ2
↪→ . . .

ϕk
↪→ Vk

ϕk+1→ . . .
ϕn−1→ Vn ∼= Vn+1 . . .

We want to show that ϕk+1 is a monomorphism by contradiction and hence assume ϕk+1

is not a monomorphism. Hence ϕk+1 has a kernel ker(ϕk+1). If ker(ϕk+1) ∩ Im(ϕk) = ∅
then we can decompose Vk = Wk ⊕ ker(ϕk+1) and by the same argument as before this

is a contradiction.

If ker(ϕk+1)∩Im(ϕk) 6= ∅ we can assume, without loss of generality, that dim(ker(ϕk+1)∩
Im(ϕk)) = 1 and simply denote the intersection by F . Since ϕi, i ≤ k, are monomor-

phisms we can write

W1 ⊕ F
ϕ1
↪→ W2 ⊕ F

ϕ2
↪→ . . .

ϕk
↪→ Wk ⊕ F

ϕk+1→ . . .
ϕn−1→ Vn ∼= Vn+1 . . .

which means we can decompose V = W ⊕Q(1, k) and hence W would be a N-persistence

vector space such that dim(W ) < dim(V ), which is a contradiction, and hence ϕi is a

monomophism for all i.
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The last step of the proof is to note that since that each ϕi is a monomophism V1 must

be the zero vector space since else we could write V = W ⊕Q(1,+∞)dim(V1) which would

be a contradiction. This must then be true also for V2 and so on which gives

0
ϕ1
↪→ 0

ϕ2
↪→ . . .

ϕn
↪→ 0 ∼= 0 . . .

which is a contradiction and completes the proof.

By studying this proof we can see exactly what the bars represent in the structure. A

bar from a to b is simply a hole in the collection of simplicial complexes that exists

from index a to index b in the sequence of simplicial complexes. The uniqueness of this

decomposition is also important to show since it guarantees we do not interpret the same

data in two different ways.

Theorem: The decomposition of an N-persistence vector V = {Vi, ϕi}i∈N space into

bars is unique.

Proof. Assume there are two different decompositions⊕
ai,bi∈N

Q(ai, bi) ∼=
⊕

cj ,dj∈N

Q(cj, dj)

We want to show that these decompositions in fact must be identical in the sense that

there exists a bijection f such that

f(Q(ai, bi)) = Q(cj, dj) if and only if ai = cj and bi = dj.

or more informally the sums are the same up to indexing. We will show this by induction

on ai. First let a′ = mini∈I ai and pick the corresponding collection of bars {Q(ak, bk)}k∈K
where K = {k ∈ I |ak = a′}. Note that {Q(ak, bk)}k∈K must have a function f as defined

above on it otherwise the decompositions would not be isomorphic.

Now assume f exists on a collection of bars, constructed as above, for all ai ≤ n for

some n ∈ N. Let a′ = min i∈Iai such that a′ > n. We want to show that f also is de-

fined on {Q(ai, bi)}ai≤a′ . By the exact same argument as for the base case we see that f

must exist on {Q(ai, bi)}ai≤a′ since otherwise the decompositions would not be isomorphic

which completes the proof.
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4.5 Discussion of Properties

We analyze barcoding with respect to the same criteria as hierarchical clustering. As a

remainder we want the method to:

1. have an output that is visualizable;

2. have outputs that are in some metric space with calculable distances,

3. be continuous and stable so its outcome is not sensitive to noise and small pertur-

bations.

4.5.1 Visualization

In both processes, barcoding and hierarchical clustering, the first steps are the same and

involve building a persistence simplicial complex. In the case of hierarchical clustering

the simplicial compexes are discrete. By taking the homology we then get a persistence

vector space. This can be illustrated as follows:

Data
hierarchical clustering // Dendrograms

H0 // Persistance vector spaces

The result can be then decompose into bars which is easily visualizable. Note that in this

last step more information is removed as there are more isomorphisms of persistance vec-

tor spaces than isomprphisms of dendrograms. In this way we identify non-isomorphic

dendrograms. Figure 2.2 gives an example of two non-isomorphic dendrograms which

have the same bar code, seen in figure 4.1.

An example of how to plot barcodes is seen in figure 4.2. Note that a bar Q(a, b) is

represented by a line starting at a and ending at b. For a high number of bars this plot

can get hard to read and we simplify it transposing all the bars to start at zero:

Q(a, b)→ Q(0, b− a).

Note that in doing this we assume the length of the bars contains most of the information.

Additionally, since we do not care about the indexing of the bars we can sort them

according to length to make it even easier to visualize. An example of this can be seen

in figure 4.3.

4.5.2 Comparing Outputs: Bar Codes

To discuss the comparing of bar codes first a distance between them has to be defined.

We will here use a special case of the bottleneck distance (see [10]). Let Q1 and Q2 be
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Figure 4.2: A plot of barcodes up to dimension 3. Dim 0 in the figure corresponds to
H0, that is the components. More generally Dim N corresponds to HN or the N + 1
dimensional holes.

bar codes and let the length of the bars be defined as |Q(a, b)| = |b− a|. We then define

the distance between the bar codes dB(Q1,Q2) as the smallest ε > 0 such that there is a

bijection f : Q1 → Q2 from all the bars in Q1 of length greater than ε to all the bars of

Q∈ of length greater than ε and

|Q(a, b)− f(Q(a, b)) < ε|.

Now given bar codes that are sorted according to length it is fairly easy to approximate

ε even though no exact complexity can be stated here. Also we can choose which bar

codes we want to analyze by restricting our comparison to the homology Hn of interest

[1].

4.5.3 Continuity

The process of creating bar codes described in this thesis with the nerve complex is con-

tinuous with respect to the bottleneck distance [4] [10]. It should be noted thought that

by looking at π0(K) of the persistence simplicial complex the dendrogram will correspond
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Figure 4.3: Barcodes obtained from Vietoris-Rips on a torus. They are not transposed
to start at 0 but sorted by length.

to the one of single linkage hierarchical clustering.
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Conclusions and Closing Thoughts

In general we can think of barcoding as the process of hierarchical clustering but more

general since we capture higher dimensional geometry and not only the clustering. Of

course there are some drawbacks like the fact that there is not obvious way of how the

counterpart of complete linkage clustering would look like in the barcoding case.

In this section we will first conclude the the last two chapters. Then some ideas for

further work will be presented together with an idea of how to combine complete linkage

with bar coding. The idea is in no way analyzed in depth because of time constraints

but it will be argued of why it could be of interest to pursue.

5.1 Conclusions

Barcoding is, in general, easier to visualize than hierarchical clustering and gives us higher

dimensional geometric information. We have noted however that barcoding can interpret

different dendrograms as the same seen as bar codes. This is however something we

expect and that is desired since we want to make the output easier to visualize. Also it

should be noted that the complexity is higher for barcoding (O(n3)) (see [13]) than single-

and complete linkage (O(n2)) (see [11] [7]). On the other hand even though barcoding is

a more expensive method the bars are cheaper to compare to one another.

Hierarchical clustering is continuous for single linkage and barcoding is continuous for

all three methods presented in this thesis. This will be discussed a bit more in depth in

the next section.

5.2 Combining Complete Linkage and Bar Codes

Let K be a simplicial complex constructed with any of the three methods presented in

this thesis. We obtain an R+-persistence simplicial complex Φ : R+ → K by varying the

resolution r ∈ R+. Construct the dendrogram θ by

θ : r 7→ π0(Kr) = π0(Φ(r))
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It is easily checked that this dendrogram corresponds to the single linkage hierarchical

clustering algorithm dendrogram. To avoid the chaining phenomenon another approach

is presented here.

1. Perform complete linkage at the data set.

2. Analyze the dendrogram and divide the data set in clusters.

3. Perform barcoding on the separate clusters.

The idea is to avoid chaining by first finding how the data clusters before we use

barcoding. We want a method for analyzing the dendrogram that does not require an

arbitrary choice of some parameter. One such method is the following method:

1. Find the cluster that persists the longest Π0 6= θ(+∞), i.e. the longest leg in the

dendrogram. (Note that we do not count the last cluster that exists to infinity.)

2. Find the cluster that persists the longest Π1 6= Π0 and also overlaps with Π0, i.e.

there is some r ∈ R+ such that Π0,Π1 ∈ θ(r).

3. Repeat for Πi until there are no more clusters.

By dividing the data sets in smaller parts before using barcoding the method should

in general become less computational expensive as well ah avoiding the chaining phe-

nomenon. The obvious drawback is of course that we have to either choose at what

resolution we should divide the data into separate clusters or we end up with two reso-

lutions to vary. There are three main questions that would be interesting to think a bit

deeper about regarding this method.

1. Is there a good way to visualize the output?

2. What is the complexity?

3. How does this method change the higher homology captured compared to tradi-

tional barcoding?

5.3 Discussion Regarding Ultrametric Spaces

We have seen that hierarchical clustering is closely connected with ultrametric spaces. In

this section we show that another class of metric rooms are of interest to better classify

to understand barcoding better.

Preposition: The metric space (X, d) is an ultrametric if and only if VR(X,∼r) is a

collection of disjoint simplexes for every r > 0.
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Proof. First assume (X, d) is an ultrametric. Let yr be the collection of all points z ∈ X
such that there exists a collection of points xi ∈ X such that y = x0, xn = z and

d(xi, xi+1) < r. Then note that d(z, y) ≤max d(xi, xi+1) < r, i.e. all vertices are con-

nected to each other and the implication is done.

Now assume that VR(X,∼r) is a collection of disjoint simplexes for every r. This means

that if the vertices (x, y), (y, z) are in VR(X,∼r) then we have that (x, z) also must be in

VR(X,∼r). Since (x, z) is in VR(X,∼r) as long as both (x, y) and (y, z) are in VR(X,∼r)
it follows that d(x, z) ≤ max(d(x, y), d(y, z)) and the proof is complete.

Corollary: If (X, d) is an ultrametric then VR(X,∼r) → π0(X) is a homotopy equiv-

alence.

Proof. This is easy to see since all the clusters in VR(X,∼r) will be simplexes and hence

they can be continuously retracted to points.

Informally we can say that in an ultrametric space we will get no information by looking

at the higher homology since everything is simple disconnected points.

An interesting question that now arises is for which metric rooms that are not ultramet-

rics that VR(X,∼r) → π0(X) will be a homotopy equivalence? It would be interesting

if one could classify these rooms to better understand which rooms that contains higher

dimensional geometrical data.
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